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1. Maximum Intensity Projection

To locate the point along the view ray at which the distribution
reaches its maximum, we differentiate with respect to τ and solve
for the root:
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Inserting the t-density into Eq. (1) gives Eqs. (2)–(3). The applica-
tion of the chain rule leads to Eqs. (4)–(6). The product vanishes
when Eq. (6) vanishes to zero, which is a linear function in the dis-
tance τ. Rearranging for τ gives a closed-form expression for the
distance at which the distribution reaches its maximum:
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2. Hull Surface

Hull surfaces depict isocontours

f̂ (p0 + τr) = h (8)

for a given isovalue h. Rearranging Eq. (8) gives:

(p0 + τr− µ̂)T
Σ̂
−1

(p0 + τr− µ̂) = R (9)

with

R = ν


hΓ

(
ν

2
)√

(νπ)k det(Σ̂)

Γ

(
ν+k

2

)
− 2

ν+k

−1

 (10)

Eq. (9) is quadratic in τ

τ
2a+ τb+ c = 0 (11)

and hence there is a closed-form solution for the entry and exit
distance of the ray with the coefficients:
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Note that solutions are imaginary if the ray does not hit the isocon-
tour.

3. Implementation Details

The following section elaborates on implementing the shaders used
to efficiently render the prism view. Fig. 1 gives an overview of the
rendering pipeline.

Input Data. The input to our algorithm is a mixture model as in
Eq. (2) of the main paper with given distribution parameters, i.e.,
means and covariances. If the user provides points only, we use ex-
isting packages to fit distributions [AWBM18]. We store the num-
ber of distributions n and the parameters µi, Σi in a uniform buffer
object on the GPU, allowing efficient access from all shader stages.
Further, an index buffer is created on the CPU side, which stores
the order in which the tiles are displayed on the facets. When the
user orders the tiles by a different metric, the index buffer content
is updated accordingly.

Tile Transformation. The geometric layout of the prism view is
determined on the CPU side by filling a static vertex buffer. The
vertex buffer contains two triangles for every tile of each facet.
This way, the primitive ID can be used to identify the ID of the
tile uniquely. The triangle vertices are ordered such that the first
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Figure 1: Illustration of the rendering pipeline. Input to our method is given mixture models or individual data points to which distributions
are fitted first. The prism view is formed by a quad mesh with one quad per tile, and where each quad is represented on the GPU with two
triangles. From the primitive index, the tile can be identified. The parameters of the mixture model distributions (means and covariances) are
passed via uniform buffer objects. The per-tile transformation from world space to tile space is calculated to place the distributions inside the
tiles. Lastly, the fragment shader performs interior mapping to calculate the intersections with the walls, and performs analytic ray casting
against the transformed distributions.

two vertices constitute the tile diagonal. Its midpoint identifies the
center of the tile. Since each tile has its designated location on the
facet, the distributions can be read from the uniform buffer object,
and their coordinate system can be transformed to the tile’s respec-
tive location.

Shading. The fragment shader receives the identifier of the tile
shown by a given pixel from the previous shader stages. A ray
is then cast analytically against all distributions, which have been
transformed to the respective tile coordinates beforehand. The third
layer of the prism view conveys a 3D impression by showing walls
in each cell’s interior. If a ray does not intersect with a distribu-
tion, we calculate the intersection with an interior wall using the
interior mapping algorithm [vD08]. To improve the depth percep-
tion, shading is calculated on the interior walls. All calculations are
lightweight, and the frame rate of the algorithm is very high, as
shown in Section 7.4 of the main paper.

4. Glyph Tooltip

In Fig. 2 we see a tooltip that appears when the user hovers over
the attribution glyph of a tile.

5. Travel Reviews

The third investigated data set contains average ratings from 980
tripadvisor.com users [RSJ18] and was clustered with a Gaussian
mixture model. All natural axis were normalized before clustering.
The provided average ratings cover ten categories. We start our
analysis on the facet of canonical basis vectors on the first stage.
Four distributions can be seen: The users represented by the pur-
ple one review parks, resorts, and juice bars better than the oth-
ers but often give religious places bad reviews, as seen in Fig. 3.
The users of the blue distribution seem to be counter-reviewing
religious places as good while giving bad reviews for parks and
resorts. The yellow distribution evaluates restaurants much better
than the remaining users, as seen in Fig. 4 left. The mean of violet
distribution lies often centered, thus those users appear to have no
preferences. To separate the distribution from the remaining distri-
butions, we choose as the first axis the canonical basis vector for

Figure 2: When the user hovers over the glyph, a tooltip popps up
showing the attributes and corresponding values. The attribute the
mouse points at is highlighted.

Figure 3: Here, we observe three canonical basis vectors, with the
blue and purple distributions located on opposite sides within each
tile.

restaurant reviews. Afterwards, we are interested in getting the best
information gain for the yellow distribution. Thus, we choose the
first tiles from the facet of the yellow distribution in each stage,
as seen in Fig. 4. In the second, we discover that this tile is highly
influenced by dance clubs. The first per-distribution PCA basis vec-
tor of the last stage is composed of many attributes. Examining the
yellow distribution in the detail view reveals that even this cluster
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Figure 4: The guided exploration leads the user through three
stages, incrementally adding one basis vector at each step. Notably,
in the third stage, the attribution glyph reveals that the third basis
vector is composed of significantly more canonical basis vectors
compared to those selected in the earlier stages.

Detail View Filtered Detail View

Figure 5: In the unfiltered detail of this subspace, the three clusters
on the left and their points exhibit significant overlap. However,
by applying the filter options, it becomes clear that the clusters
are well separated in high-dimensional space. Only 7 points were
identified with a maximum cluster probability of less than 55 %.

has a low average rating of only 1.7 for restaurants. But the view
also raises questions if our Gaussian model was fitted well since the
points of the other clusters are really crowded, as seen in Fig. 5 left.
A way to verify the fitting is to experiment with different subspaces.
Our tool offers, however, a more efficient way. Using the point filter
reveals that only 36 points have a derivation higher than five, and
only 21 points have a maximum cluster probability of less than 65
%. If we lower this value to 55 % there are only 7 points left. This
allows us to conclude that the clusters are clearly separated in the
high-dimensional space, but this subspace is only suited to separate
the yellow distribution from the other clusters.

6. Expert Study

The expert study was conducted with the domain scientists who
participated in the contextual inquiries described in the Require-
ment Analysis (Section 3). Expert D has 5 years of experience in
data exploration, clustering, and analysis. Expert M has 30 years
of experience in machine learning and mixture models. Finally, ex-
pert V has 12 years of experience in visualization. During the eval-
uation, we followed the think-aloud protocol and encouraged par-
ticipants to verbally communicate their thoughts. We took note of
everything they said. First, we explained the idea of building their
subspace by introducing a tractable data set of four dimensions and
three distributions. We introduced the prism and explained the con-

cepts of building their basis and adding bookmarks. All experts
commented that these concepts were novel and made it easy to ex-
plore the data. When asked about their usual tools, they mentioned
Python, R, and scatterplot matrices for 2D canonical subspaces.
While some used PCA for dimensionality reduction, they noted that
interpretability is challenging. M said, “The glyph acts as a signpost
in high-dimensional space, describing the direction I am looking.”
Besides the prism, we also showed the experts the different visual-
ization techniques (MIP, Hull, DVR) by Lawonn et al. [LME∗23].
All experts agreed on their usefulness in the respective task at hand.
Expert D stated: “The DVR view beautifully demonstrates that a
mixture of t-distributions is not a t-distribution itself.” Expert D
sent us their own data set in advance, which they were already fa-
miliar with. Interestingly, the expert could detect features that they
were unaware of before. D said, “This tool allowed me to explore
the data more intuitively than before, and the filter function allowed
me to spot outliers that I was not aware of.” Finally, all experts con-
sidered this tool a novel contribution that clearly fills a gap in data
exploration and analysis. Experts D and M asked for the availability
of source code, which we will publish after acceptance.

7. Quantitative Task-based Evaluation

Table 1 summarizes the time needed by the experts for each task.
Figs. 6, 7, 8, 9, 10 and 11 show figures created by our experts during
the Quantitative Task-based Evaluation.

8. Questionnaire

In the following, the original questionnaire the participants received
is shown.

1. The overview in the first stage of the prism view helps to identify
a facet (e.g., canonical basis, PCA, etc.) that is worth exploring
further.

2. In the first stage of the prism view, the overview of basis vector
choices on a selected facet helps to identify an interesting first
basis vector for the mixture models.

3. The visualization helps to understand where the probability of a
certain distribution is highest.

4. The second stage helps to identify a second basic vector that
leads to well-separable distributions.

5. Similar projections are easy to identify.
6. The building metaphor conveys a three-dimensional impression

of the multi-variate distributions.
7. Visualizing the data points helps to confirm whether the distri-

bution fits the data points well.
8. Potentially interesting data points can be identified (e.g., out-

liers).
9. The metric chart allows for finding the basis vector with highest

score for any given metric.
10. The metric chart conveys well if a basic vector performs well on

one or multiple metrics.
11. The metric chart allows for finding basic vectors that perform

similarly across individual or multiple metrics.
12. The reordering helps in finding basis vectors that perform simi-

larly according to a given metric.
13. The basis attribution conveys which canonical basis vectors con-

tribute to a given basis vector.
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Table 1: The table presents the time (in minutes) taken by each expert to complete the tasks in the Quantitative Task-based Evaluation.

User Id 1 2 3 4 5 6 7 overall
1 Tool 01:13 00:44 01:00 01:10 00:50 00:20 00:40 05:57

analytical 10:00 03:38 07:26 01:04 10:14 05:04 37:26
visual 14:18 14:18

2 Tool 02:20 00:26 01:06 00:33 00:35 02:36 00:13 07:49
analytical 05:40 01:40 08:16 01:12 12:06 11:45 08:29 49:08

visual 00:00
3 Tool 00:40 01:03 00:55 00:58 01:29 00:27 00:11 05:43

analytical 04:54 01:26 05:13 03:15 15:04 10:17 40:09
visual 09:28 09:28

4 Tool 00:30 00:38 01:31 01:39 00:41 01:47 00:13 06:59
analytical 01:25 03:28 01:53 05:57 09:01 07:24 02:36 31:44

visual 12:11 03:36 15:47
5 Tool 00:20 00:12 00:46 00:47 00:53 00:20 00:12 03:30

analytical 01:46 00:42 04:40 00:57 02:57 08:04 01:18 20:24
visual 24:20 03:41 28:01

Our Tool Expert Solution

Figure 6: Task 1: For cluster no. 1, find the three basis vectors with the highest variance. Create a 3D figure where those vectors are the
three axis.

14. Setting bookmarks is useful for marking interesting subspaces.
15. The overview of bookmarked basis vectors enables the compar-

ison of basis vectors that have been selected on different facets.

9. Full Performance Measures

In Section 6 of the main paper, we discussed the rendering times of
our system at all stages. Table 2 further lists the standard deviations
of the time measurements. In agreement with the observations in
the main paper, we found that the system reached real-time frame
rates in all settings.

10. Visibility Metric

Fig. 12 illustrates a step in exploring the Shanghai ranking dataset.
In the first stage, we selected the ’Nature and Science Publications’

tile. The second stage shows the tiles ordered by the visibility met-
ric. In the top-ranked tile, located in the upper left corner, the distri-
butions overlap significantly less than in the other tiles. In contrast,
the last two tiles exhibit much higher overlap.

11. Sparsity Metric

The ’Urban Air Quality and Health Impact Analysis’ [Abd] dataset
contains 1,000 instances across 46 dimensions. However, after ex-
cluding non-continuous attributes, only 28 dimensions remain. The
PCA facet from the first stage is shown in Fig.13, with tiles ordered
by their sparsity scores. In the first and second tiles, we can observe
peaks in the attribution graph. Hovering over the graph reveals
that the ’feels like maximum temperature’ contributes about half
to the first basis vector, while the actual temperature accounts for
a quarter. For the second basis vector, sunrise and sunset each con-
tribute approximately 40%. Despite the existence of vectors with
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Our Tool Expert Solution

Figure 7: Task 3: Create three 1D figures in which cluster no. 3 and no. 4 are well separated.

Figure 8: Task 4: Starting from cluster no. 5, find three canonical
basis vectors so that the variance is large.

Figure 9: Task 5: Find five data points that have a maximum proba-
bility of cluster membership of 80%. Create a figure demonstrating
that these points lie between the clusters.

Table 2: Average rendering times and standard deviations for a
k-dimensional dataset with k+ 1 t-distributions at a resolution of
3840×2160. The set includes 10,000 points rendered in the detail
view.

Stage (Rendering) k ∅ t [ms] std t [ms]
1 6 0.60192 0.0776197
1 12 0.765367 0.098181
1 18 0.967857 0.108132
2 6 0.55274 0.077256
2 12 1.10414 0.12213
2 18 2.10762 0.16661
3 (MIP) 6 2.75559 0.222025
3 (MIP) 12 10.3602 0.227028
3 (MIP) 18 33.3151 0.398709
3 (Hulls) 6 2.45783 0.243421
3 (Hulls) 12 8.73736 0.604935
3 (Hulls) 18 22.5291 3.20841
3 (DVR) 6 8.56939 0.420942
3 (DVR) 12 22.6289 0.476716
3 (DVR) 18 41.3969 1.90924
Detail View (MIP) 6 1.88022 0.176672
Detail View (MIP) 12 3.44845 0.18506
Detail View (MIP) 18 5.71082 0.255651
Detail View (Hulls) 6 1.35836 0.194521
Detail View (Hulls) 12 2.09915 0.214887
Detail View (Hulls) 18 2.72232 0.218801
Detail View (DVR) 6 12.9403 0.291809
Detail View (DVR) 12 22.8568 0.646743
Detail View (DVR) 18 33.0279 0.128252

high sparsity for this dataset, a user would likely never select these
tiles. The simple reason is that the data shows little variance for
these attributes—’feels like maximum temperature,’ sunrise, and
sunset times are nearly identical across all instances.
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Our Tool
Two experts created histograms for each distribution, where each bar represents the number of points within a

specific range of Mahalanobis distances.

Figure 10: Task 6: Look at the clusters and the underlying data points. For which cluster do you think the data points do not follow a
/revisednormal distribution? They had to identify the purple distribution, which is represented by the histogram in the middle. Notably, this
histogram exhibits generally higher Mahalanobis distances.

Figure 11: Task 7: Find the points that are at least 7 standard de-
viations away from the center of each cluster. Display those points
in a figure.

Figure 12: The second stage of the prism view sorted according to
the visibility score.
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Figure 13: The PCA facet from the first stage of the prism for a 28-dimensional dataset. The tiles are ordered according to their sparsity
score. A user would likely avoid selecting the highest-ranked basis vectors.
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