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Figure 1: In this paper, we explore visually aesthetic alternatives to common steady 2D vector field visualization techniques. From left to
right, evenly-spaced streamlines [JL97], line integral convolution [CL93], as well as our two proposed approaches are shown.

Abstract
In this paper, we investigate how recent advances from the computer graphics literature can be applied to improve the visualiza-
tion of two-dimensional vector fields. To this end, we propose two different approaches that both start from a set of evenly-spaced
streamlines. The first approach avoids the need for contrast normalization, which is usually required for LIC approaches. For
this, the image synthesis is phrased as a diffusion problem by placing double-sided Dirichlet boundary conditions along the
streamlines. The diffusion problem is formally modeled as a linear elliptic partial differential equation, which is solved stochas-
tically using a variant of the walk-on-spheres algorithm in order to achieve anti-aliased results. The second approach leverages
human’s perception of shape to convey flow patterns. For this, we lift the streamlines into the third dimension and generate
visual contrast among adjacent streamlines by means of ambient occlusion. To synthesize the images, we apply a physically
based material model and employ a Monte Carlo renderer to simulate the light transport.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Rendering;

1. Introduction

Flow visualization is concerned with the visual analysis of vec-
tor fields. For two-dimensional data sets, it is common practice to
start the exploration with the well-established line integral convolu-
tion (LIC) [CL93] or by placing a dense set of streamlines [JL97].
Even for three-dimensional domains, a common starting point is
to explore slices using these approaches. Although there have been
extensions in the following years, the core concepts of the algo-
rithms were established in the 1990s, around the time OpenGL was
just released by Silicon Graphics (1992). Much progress has been
made in the graphics community over the past 30 years. When pol-
ishing 3D visualizations for publications in prestigious journals or

for science communication, the utilization of global illumination,
ambient occlusion, or area lights has become a common choice for
scientific visualizations [MSRT13,GKT16,DG24], resulting in eye
catching images. There is, however, a striking difference in aes-
thetics when it comes to 2D flow visualization, where techniques
such as LIC are still the standard practice. Using currently trending
techniques from computer graphics [NDVZJ19,SC20], we propose
two 2D vector field visualizations that primarily aim to be visually
pleasant, while at the same time not sacrificing too much on the
effectiveness. Both visualizations start from a set of evenly-spaced
streamlines [JL97], which are faded out at the endpoints in different
ways. Our first approach formulates the image synthesis as a dif-
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fusion process by utilizing diffusion curves [OBW∗08]. Thereby,
each streamline receives a color as Dirichlet boundary condition on
the left and right side, and the color of each pixel is then computed
by a diffusion process. For a subpixel-accurate and anti-aliased
rendering, we solve the diffusion problem stochastically using the
Walk-on-Spheres (WoS) algorithm [Mul56, SC20], which is cur-
rently extended and actively researched in the geometry processing
community [SMGC23, SCJ∗23, MSCG24]. To implement fading
at the endpoints of curves, we extend the WoS algorithm to han-
dle transmissive boundary conditions by lifting the random walks
into an additional dimension that allows walks over the boundaries.
Unlike LIC, this approach does not require a contrast enhancing
post-process. The second approach adds visual contrast among ad-
jacent streamlines by calculating ambient occlusion through a light
transport simulation [NDVZJ19]. To this end, the line geometry is
extruded into the third dimension and the width of the geometry is
reduced towards the endpoints of the streamlines. Unlike LIC, the
darkening of lines is grounded in the shadowing that humans are
naturally accustomed to, aiming for more pleasant visualizations.
In summary, we make the following contributions:

• We propose two 2D flow visualization methods that aim for a
visually pleasing communication of flow patterns.

• We extend the Walk-on-Spheres algorithm to handle transmis-
sive boundary conditions, for which we formulate the underlying
PDE with probabilistic boundary conditions.

2. Related Work

Among various flow visualization techniques, one common and ef-
fective group is the group of texture-based methods, which aim to
create a dense representation of the vector field using an under-
lying texture [LHD∗04]. The texture can be generated with spot
noise [VW91], where each spot uses a uniform intensity function
to represent a particle moving slightly in time, creating a streak
that follows the direction of the local flow. Later, spot noise was
applied to experimental flow visualization [dLPPW95], and further
enhanced techniques such as parallel spot noise [QSWW10] and
unsteady spot noise [LJH03] have also been proposed. Although
spot noise methods can convey the velocity magnitude of the flow,
they are less effective in representing the flow direction and crit-
ical points than LIC techniques [dLvL98], which are developed
from the line integral convolution algorithm [CL93]. Later, fast
LIC was introduced to speed up the computation time of LIC by
minimizing streamline computation time and reusing some of the
convolution results [SH95]. The range of LIC has also been ex-
tended from 2D regular grids to non-linear grids [For94], unsteady
flow [FC95,SK97] and 3D flow [IG97,IG98,RSHTE99]. However,
due to the nature of how LIC images are constructed, the results are
often blurry and noisy with low contrast, making feature detection
difficult [OK97, VKP99]. Okada et al. [OK97] proposed enhanced
LIC, which applies the LIC algorithm twice and uses two filters for
clearer lines as a post-processing process. In addition, they used
the velocity direction to color the texture image for better feature
detection in the final result. Hege and Stalling used a higher or-
der filter kernel for smoother LIC results on any surfaces [HS98].
Verma et al. [VKP99] leveraged the advantages of both streamline
visualizations and LIC techniques.
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Figure 2: The fading function fi(t) is used to fade out a streamline
with arclength τ over a distance F at the beginning and ending
of the line. The fading function fi(t) is computed by applying a
smoothstep to the piece-wise linear function ri(t).

3. Method

The goal of this paper is to explore visually pleasant alternatives to
the common line integral convolution (LIC) [CL93]. For this, we
propose two novel flow visualization approaches that are based on
Monte Carlo methods used in smooth vector graphics [TG24] and
light transport simulation [Jar08]. In the following, we will first
explain the common input to both approaches.

3.1. Streamline Generation

Given is a continuous two-dimensional steady vector field v(x) :
D → R2, which is defined in the spatial domain D ⊂ R2. The
starting point for both our approaches is the generation of a dense
set S = {s1, . . . ,sN} of N streamlines si(t) that cover the domain
D. Each streamline s(t) is uniquely determined by a seed point
s(t0) = s0, and we require all streamlines to be tangential to the
normalized vector field v(x):

ds(t)
dt

=
v(s(t))
∥v(s(t))∥ s.t. s(t0) = s0. (1)

Formally, we define a streamline over the domain si(t) : [0,τi]→D,
where τi is the total arclength of the streamline si. We define a
fading function fi(t) : [0,τi]→ [0,1] per streamline si, which is zero
at the endpoints and one in the interior of the curve domain:

fi(t) = 3ri(t)
2−2ri(t)

3, ri(t) = min
{

1,
t
F
,

τi− t
F

}
. (2)

Thereby, F denotes the distance over which the fading takes place.
Fig. 2 illustrates the fading function. The fading is not applied to
endpoints on the domain boundary ∂D to avoid unnecessary fading
at the image border, and is reduced when the density of streamline
endpoints is high to show critical points. To represent saddle critical
points well, we add separatrices [GBR21] to the streamline set S.
The remaining space in the domain is filled by applying the evenly-
spaced streamline seeding algorithm of Jobard and Lefer [JL97].
The calculation of distance to existing lines is accelerated with kd-
trees. The streamlines are numerically integrated using the fourth-
order Runge-Kutta method (RK4).

3.2. Smooth Vector Graphics

Conventional LIC [CL93] requires a post-process to enhance the
contrast, since the convolution with uniform noise converges to the
average gray value. When the streamlines have different lengths,
for example, because some streamlines exit the domain early, con-
trast must be adjusted locally per streamline. Instead, we propose
to treat streamlines as diffusion curves [OBW∗08], i.e., a random
color is defined on the left and right side of each streamline, which
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Figure 3: Schematic illustration of the transmissive Dirichlet con-
ditions. Consider the fading function fi(t), which determines the
’height’ of the Dirichlet boundaries. For illustrative purposes, we
rendered individual horizontal slices in the bottom row. The final
image c(x) is the average of the horizontal slices.

is diffused into the domain. While we keep the notation general and
refer to colors on the left and right side, we only use gray values in
this paper, since we intentionally leave the color channel open for
the encoding of other attributes.

We follow Jeschke et al. [JCW09] and model diffusion curves as
double-sided boundaries with Dirichlet conditions. Formally, we
divide the domain D into the interior Ω ∈ R2 and its boundary ∂Ω.
The boundary ∂Ω = ∂ΩN ∪ ∂ΩD consists of the image boundary
∂ΩN and the two sides of the streamlines themselves ∂ΩD:

∂ΩD = {s+i ,s
−
i | si ∈ S}. (3)

The two sides of each streamline si have opposite normal orienta-
tion n+

i = −n−
i and separate colors g+i ,g

−
i , which are randomly

sampled from a uniform distribution. In previous work on smooth
vector graphics, boundary curves have always been modeled as
opaque, not allowing colors to leak through. Instead, we model
transmissive Dirichlet boundary conditions to achieve smooth fad-
ings of the line endings, as shown in Fig. 3. The bottom row shows
images with non-transmissive boundaries, which are non-smooth
at line endings. The fading term in Eq. (2) varies along the curve
f (x) := fi(t) for x = ci(t), which we conceptually model as the
’height’ of the curve. Thus, the curve is low at the end points
and high in the middle. The higher the curve, the less color leaks
through, which results in smoother transitions at the endpoints. To
determine the final pixel color c(x) : Ω→ C with C ⊂ R3, we per-
form Monte Carlo integration over the height range [0,1] by uni-
formly sampling h ∈ [0,1] and treating the boundaries as closed
only when h < fi(t):

c(x) =
∫ 1

0
c(x,h) ∂h (4)

For a given h, we are interested in the color field c(x,h) : Ω→ C

Figure 4: Illustration of the Walk-on-Spheres. Left: The walk con-
tinues recursively until a Dirichlet condition is reached. Right: At
homogeneous Neumann boundary conditions points are reflected.

that fulfills the Laplace equations:

∆c(x,h) = 0 ∀x ∈Ω (5)

c(x,h) = g(x) ∀x ∈ ∂ΩD∧h < f (x) (6)

∂c(x,h)
∂nx

= 0 ∀x ∈ ∂ΩN (7)

where g(x) is the respective color from {g+i ,g
−
i } of the streamline

si containing x ∈ si. Eq. (5) implies that the color field c(x,h) is
spatially smooth in the interior of the domain. Eq. (6) applies the
Dirichlet boundary condition along the diffusion curves only if h is
below the fading term, which lowers the probability of the existence
of the boundary as the line fades out. Eq. (7) applies a homogeneous
Neumann boundary condition to the border of the image.

To compute c(x,h), we use the Walk-on-Spheres (WoS) [Mul56,
SC20], which spans the largest possible ball C = B(x,r) around
x that does not intersect any Dirichlet boundary. Then, the color
c(x,h) is integrated over the boundary of the ball z ∈ B(x,r):

c(x,h) = 1
|B(x,r)|

∫
∂B(x,r)

c(z,h) dz, (8)

The idea of WoS is to compute the unknown color c(z,h) recur-
sively by generating another ball around z, as illustrated in Fig. 4
(left). In essence, a random walk on recursively generated spheres
(or balls) is performed, and it terminates when the walk gets suffi-
ciently close to a diffusion curve. When this happens, the Dirichlet
condition in Eq. (6) provides the color for the endpoint of the walk.
The size of the next sphere is determined by finding the distance
to the closest boundary. At the beginning of each walk, we draw
a uniform random number ξ ∈ [0,1] to determine the height h in
Eq. (4), which decides the boundary ∂Ω, cf. Fig. 3. With Eq. (7),
we place homogeneous Neumann boundary conditions on the im-
age boundary. For a random walk, this means that walks that exit
the domain are simply reflected back into the domain [Gre07], as
shown in Fig. 4 (right). We implemented our approach on the GPU
using compute shaders. Unlike with LIC, the colors placed by the
Dirichlet boundary conditions in Eq. (6) retain a high contrast.

3.3. Light Transport Simulation

The smooth vector graphics formulation lends its aesthetic appeal
from the smooth color gradients between lines. This entails, how-
ever, that the streamline density is not as high as with LIC. Thus,
we further propose another approach, which starts from a denser set
of lines. A conventional LIC visualization exhibits bright and dark
lines that are aligned with the flow. Which lines are darkened is
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random. In our human perception, darkening is a visual cue related
to shape perception, in particular indentations exhibit a darkening
due to ambient occlusion. Thus, with this paper, we aim to create a
three-dimensional structure that exhibits indentations aligning with
the line structures. Similar to LIC, this results in bright and dark
line structures that align with the flow, but human perception can
make better sense of the visual cues. The calculation of ambient
occlusion in the indentations of the three-dimensional geometry re-
quires a physically-based light transport simulation.

In a physically-based renderer, the intensity of a pixel depends
on the scene extent. To unify the light setup across all scenes, we
initially rescale the scene to fit the streamlines into the unit domain
[−1,1]2. The input streamlines are 1-dimensional lines embedded
in a 2-dimensional domain. For rendering in a light transport simu-
lation, we extrude the lines to 2-dimensional surfaces embedded in
a 3-dimensional domain. Since we aim for a varying amount of am-
bient occlusion between adjacent lines, we elevate each streamline
s to an empirically chosen random height h ∈ [0,0.1], With this,
each streamline vertex gives rise to four points:

p1
j =

(
ŝ j− n̂ j · f (ŝ j)

0

)
,p2

j =

(
ŝ j− n̂ j · f (ŝ j)

h

)
, (9)

p3
j =

(
ŝ j + n̂ j · f (ŝ j)

h

)
,p4

j =

(
ŝ j + n̂ j · f (ŝ j)

0

)
, (10)

which are connected with the next vertex to form a triangle strip:(
p1

j , p1
j+1, p2

j , p2
j+1, p3

j , p3
j+1, p4

j , p4
j+1

)
. (11)

To avoid unwanted perspec-
tive distortion, we apply an
orthographic projection from
the top. The camera is cen-
tered above the scene to have
exact pixel correspondence
between grid coordinates and
pixel coordinates. The scene
is illuminated with a uniform
area light source that extends 30% out of the horizontal bounding
box and hovers 1 unit above the ground. The light source emits a
radiance of 3 units of power per unit area per unit steradian. For the
microfacet model, an isotropic GGX distribution [WMLT07] with
a roughness of 0.2 is used. The extruded line geometry is placed on
a ground plane, using a Lambertian BSDF with a reflectance of 0.3.

The light transport simulation solves the radiative transport equa-
tion [Jar08], which expresses the exitant radiance L(x→ ω) at x
going out in direction ω:

L(x→ ω) = Le(x→ ω)︸ ︷︷ ︸
emitted

+
∫

H
fr(x,ω′↔ ω)L(x← ω

′)(n ·ω′)∂ω
′︸ ︷︷ ︸

reflected

.

Thereby, Le(x → ω) expresses the radiance that is emitted at x
in direction ω, for example by the area light source. The term
fr(x,ω′ ↔ ω) describes the BSDF, which accounts for the frac-
tion of light that is reflected at x from the direction ω

′ towards the
direction ω. The in-scattered L(x← ω) is calculated recursively
and expresses the radiance arriving at x from direction ω

′. Lastly,
the dot product between surface normal n and incident direction

ω
′ accounts for foreshortening. The integral

∫
H collects the inci-

dent light over the visible hemisphere. Numerically, the recursive
integral is Monte Carlo estimated using a path tracer [Kaj86], for
which we used Mitsuba [NDVZJ19] through its Python binding.

4. Results

We test both our approaches on slices of different vector fields.
Fig. 1 compared conventional evenly-spaced streamlines [JL97]
and contrast-enhanced line integral convolution [CL93] with our
two proposed methods using the BORRO data set by [CB11]. We
refer to the supplemental material for similar comparisons in other
scenes. Both our approaches are Monte Carlo methods, i.e., their
solution is calculated iteratively, starting from a noisy solution.
The supplemental material contains a convergence series, showing
how the noise vanishes over time. Further, the supplemental mate-
rial contains performance measurements for both approaches on all
test scenes. The smooth vector graphics rendering takes 116-275
seconds for 100 spp (samples per pixel), depending on the scene.
The time for the light transport simulation remained consistently at
about 75 seconds for 1,024 spp. Due to the non-Lambertian BSDF,
the light transport simulations takes more spp to reach a converged
image. Lastly, we apply three different contrast enhancement meth-
ods to all four methods, showing that their effect is negligible on
our methods, while it is well-known to be required for LIC [HS98].

5. Conclusions

In this paper, we revisited a problem that nowadays many would
consider solved: the visualization of steady 2D vector fields. With
the aim to develop visual encodings that are more amenable for
science communication, we transferred recent approaches from the
computer graphics literature into the field of flow visualization.
To utilize a smooth vector graphics representation of the flow by
means of diffusion curves, we introduced a transmissive Walk-on-
Spheres formulation that allows rendering diffusion curves with
translucent Dirichlet boundary conditions. Further, we achieved a
darkening of neighboring lines using ambient occlusion by extrud-
ing the geometry into the third dimension. For the necessary light
transport simulation, we used a state-of-the-art path tracer. Com-
pared to the line integral convolution, both our approaches need
more time to obtain converged results. The utility of our approaches
resides therefore less in interactive exploration scenarios, but rather
in presentation tasks. The Walk-on-Spheres solver could be acceler-
ated with boundary value caching [MSCG23]. Further, a grid-based
diffusion curve solver [OBW∗08] is an alternative, where special
care is needed to anti-alias the result. Further, transmissive Dirich-
let boundary conditions have not been developed for grid-based ap-
proaches, although for this it would be possible to discretize the
integral in Eq. (4) with a Riemannian sum.
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