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Fig. 1. We propose a recursive first passage algorithm for solving the boundary integral equation (BIE) of the Laplace equations, here applied to diffusion
curves. Instead of performing a biased Walk-on-Spheres (WoS) into epsilon shells near boundaries, our method instead solves the PDE on semicircles and circle
sectors (cakes) by using conformal mappings to the unit circle. From left to right, we show the resulting image, the precomputed arrangement of semicircles
and cakes, and the average path length of our method compared to Walk-on-Spheres. Our method is faster and more accurate than WoS.

In recent years, grid-free Monte Carlo methods have gained increasing pop-
ularity for solving fundamental partial differential equations. For a given
point in the domain, theWalk-on-Spheres method solves a boundary integral
equation by integrating recursively over the largest possible sphere. When
the walks approach boundaries with Dirichlet conditions, the number of
path vertices increases considerably, since the step size becomes smaller
with decreasing distance to the boundary. In practice, the walks are termi-
nated once they reach an epsilon-shell around the boundary. This, however,
introduces bias, leading to a trade-off between accuracy and performance.
Instead of using spheres, we propose to utilize geometric primitives that
share more than one point with the boundary to increase the likelihood
of immediately terminating. Along the boundary of those new geometric
primitives a sampling probability is needed, which corresponds to the exit
probability of a Brownian motion. This is known as a first passage problem.
Utilizing that Laplace equations are invariant under conformal maps, we
transform exit points from unit circles to the exit points of our geometric
primitives, for which we describe a suitable placement strategy. With this,
we obtain a novel approach to solve the Laplace equation in two dimensions,
which does not require an epsilon-shell, significantly reduces the number of
path vertices, and reduces inaccuracies near Dirichlet boundaries.
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1 Introduction
In the world around us, many phenomena can be modeled through
linear elliptic partial differential equations. Examples are heat trans-
fer in thermodynamics [Bergheau and Fortunier 2013], Newtonian
gravity in classical mechanics [Poisson and Will 2014], electric
charge densities in electromagnetism [Jones 1964], or pressure cor-
rections in fluid simulation [Bridson 2015]. Further, linear elliptic
PDEs are encountered in many branches of computer graphics, such
as geometric modeling [De Lambilly et al. 2023], rendering [Ket-
tunen et al. 2015], fluid simulation [Wang et al. 2024], vector graph-
ics [Hou et al. 2018], and visualization [Esturo et al. 2013]. Recently,
grid-free Monte Carlo methods entered the stage in graphics [Sawh-
ney and Crane 2020; Sugimoto et al. 2023], allowing to solve PDEs
on complicated domains without the need for grid discretizations.
In this class of methods, the Walk-on-Spheres algorithm [Muller
1956] solves boundary integral equations stochastically on largest
possible spheres. Its recursive formulation results in random walks
that terminate once a boundary with Dirichlet condition is reached.
The step size of the Walk-on-Spheres is determined by the distance
to the nearest Dirichlet boundary. Thus, the closer the walk gets to
the boundary, the smaller the steps become. In theory, an infinite
number of steps would be needed to reach the boundary, although
in practice the walks are terminated when they enter an epsilon
shell around the boundary. The subsequent snapping to the closest
boundary introduces some bias [Binder and Braverman 2012], but
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more importantly the large number of walking steps induces high
computational cost. The cause of this problem is that the sphere
to sample from typically shares only 1 point with the boundary,
making it highly unlikely that a random sample is placed close to
this point. Instead of placing the largest possible sphere around the
current sample point, we propose to place largest-possible semicir-
cles along piecewise linear boundaries, and largest-possible circle
sectors at convex and concave corners. For simplicity, we refer to
circle sectors as cakes throughout the remainder of this paper. Fur-
ther, for regions away from the boundary, we place empty circles in
order to cover all pixels of the image. This placement of primitives
can be done once in a preprocess. During the Monte Carlo random
walks, we look up the next primitive to use and sample the exit point
on its boundary by means of a conformal map to the unit circle, for
which the Green’s function and the Poisson kernel are known. We
show that our approach significantly lowers the number of steps in
the random walk. Fig. 1 gives an example. In this paper, we concen-
trate on Laplace equations in two dimensions, with piecewise-linear
boundary geometry, and with Dirichlet boundary conditions, which
can be found for example in diffusion curves [Orzan et al. 2008].
We later discuss the generalization to 2D Poisson equations, as well
as Neumann and Robin boundary conditions [Miller et al. 2024b;
Sawhney et al. 2023]. In summary, we contribute:

• the derivation of exit probabilities using conformal maps for
2D primitives that are nestled against boundary edges,

• a placement strategy for semicircles, circle sectors, and full
circles that cover the domain,

• a recursive walk that has a higher chance of jumping onto
boundaries without requiring an epsilon shell.

2 Related Work

2.1 Partial Differential Equations
In the following section, we recap the foundations of diffusion curves
and discuss Monte Carlo methods related to our approach.

Diffusion Curves. Diffusion curves have been introduced by Orzan
et al. [2008] as vector graphics primitives for modeling smoothly
shaded images. Formally, these curves are cubic Bézier splines that
diffuse colors from their left and right hand side into the domain,
which can be modeled as boundary value problem [Jeschke et al.
2009]. For boundary value problems, the Laplace equation describes
the smoothest unknown field u(x) : Ω → R𝑛 residing in the domain
Ω, here denoted for an 𝑛-variate function u(x), that fulfills:

Δu(x) = 0 if x ∈ Ω (1)
u(x) = g(x) if x ∈ 𝜕Ω (2)

In the interior of the domain Ω, the Laplacian Δu(x) is requested
to vanish, leading to a smooth solution. Along the domain bound-
ary, Dirichlet boundary conditions define a desired value g(x) :
𝜕Ω → R𝑛 that is given by the colors on the left and right side
of the diffusion curve, respectively. More generally, Neumann and
Robin boundary conditions could be modeled similarly [Miller et al.
2024b]. For the remainder of the paper, we concentrate on pure
Dirichlet boundary conditions, since we mainly focus on improving
the behavior of the Walk-on-Spheres near Dirichlet boundaries.

Boundary Integral Equation (BIE). As discussed in [Sawhney et al.
2023], a general solution to the Laplace equation in Eqs. (1)–(2) is
given by the direct boundary integral equation (BIE) [Costabel 1987]
for any two sets A, C ⊂ Ω:

𝑎(x) u(x) =
∫
𝜕A

PC (x, z) u(z) − GC (x, z) 𝜕u(z)
𝜕nz

dz (3)

for the inward pointing normal nz. Here, G is the Green’s function
and P = 𝜕G/𝜕n𝑧 is the Poisson kernel, which are unfortunately only
known for simple domains. For smooth boundary curves, 𝑎(x) is:

𝑎(x) =

1 x ∈ Ω

1/2 x ∈ 𝜕Ω

0 x ∉ Ω

(4)

For the treatment of non-smooth boundary curves, we refer to
Sawhney et al. [2023]. Solvers of the BIE differ in their choices of A
and C. A variety of boundary methods exist to solve the BIE [Bang
et al. 2023; Chen et al. 2024; Van de Gronde 2011]. For a more
comprehensive introduction, we refer to Sabelfeld and Simonov
[1994], Sawhney et al. [2023] and Sugimoto et al. [2023].

2.2 Monte Carlo Methods for PDEs
Walk-on-Spheres. TheWoS [Muller 1956] solves Eq. (3) for Dirich-

let boundary conditions by placing at x the largest possible ball
A = C = B(x) centered at x:

u(x) =
∫
𝜕B(x)

PB (x, z) u(z) dz (5)

For a ball in 2D, the Green’s function and Poisson kernel are:

G𝐵 (c, x) = 1
2𝜋

log
(
𝑅

𝑟

)
, P𝐵 (c, x) = 𝜕G𝐵 (c, x)

𝜕n(x) =
1

2𝜋𝑟
(6)

for 𝑟 = ∥c − x∥, and a ball with radius 𝑅 centered at c. In Eq. (5), the
second term of Eq. (3) vanished, since the Green’s function of a ball
is zero on the boundary, i.e., when 𝑅 = 𝑟 . Monte Carlo integration
of Eq. (5) gives:

u(x𝑘 ) ≈
1
𝑁

𝑁∑︁
𝑛=1

PB (x𝑘 , x𝑘+1) u(x𝑘+1)
𝑝 (x𝑘 , x𝑘+1)

=
1
𝑁

𝑁∑︁
𝑛=1

u(x𝑘+1) (7)

when the Poisson kernel is used as probability distribution for plac-
ing the next sample at x𝑘+1, which corresponds to a uniform sam-
pling of the boundary of the ball. This recursive walk terminates
once x𝑘+1 is within the epsilon shell of a boundary with Dirich-
let condition, where the value u(x𝑘+1) ≈ g(x′

𝑘+1) is chosen and
where x′

𝑘+1 ∈ 𝜕B is the closest point to x𝑘+1 on the boundary 𝜕B.
This introduces bias that reduces at the rate𝑂 (1/log 𝜖) [Binder and
Braverman 2012] with 𝜖 being the thickness of the epsilon shell.

Recent Extensions and Applications. The Walk-on-Spheres (WoS)
[Muller 1956] was popularized in graphics by Sawhney and Crane
[2020]. Analogous to bi-directional path tracing, Qi et al. [2022]
proposed constructing random walks in forward and reverse direc-
tions. Hwang et al. [2015] introduced off-centered walks to increase
the exit probability within the epsilon-shell. Instead, we utilize
other primitives, increase the exit probability in the whole domain,
and avoid epsilon shells entirely. Based on indirect BIEs, which
utilize single-layer and double-layer potentials, Sabelfeld [1982]
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introduced the Walk-on-Boundaries. The method was generalized
for Poisson equations with Dirichlet, Neumann, or Robin boundary
conditions [Sabelfeld and Simonov 1994]. Sugimoto et al. [2023]
generalized it to direct BIEs and mixed boundary problems, and
studied combinations to develop a practical solver. Within WoS,
reflections have been used at Neumann boundaries [Mascagni and
Simonov 2004]. Since the radius of the ball becomes very small
near a Neumann boundary, the walks may require a large number
of steps to terminate. Thus, Sawhney et al. [2023] introduced the
Walk-on-Stars, which determines the radius of the sphere for Neu-
mann boundaries by the distance to the closest silhouette point.
Near Dirichlet boundaries, however, the step size is still very small.
This is the problem we address in this paper. Rather than Monte
Carlo integrating the BIE for each pixel independently, Miller et al.
[2023] proposed caching partial results on the boundary (for the
boundary integral) and in the interior (for the interior integral of
the source term) and used those as correlated samples across pixels.
Li et al. [2023] used a neural network to represent caches in WoS
and sampled those caches after a pre-determined walk depth. Re-
cently, Czekanski et al. [2024] proposed a caching strategy based
on the continuity of paths of Brownian motion to reduce variance.
The Walk-on-Stars has also been extended to Robin boundary con-
ditions [Miller et al. 2024b]. Further, inverse problems [Miller et al.
2024a; Yilmazer et al. 2024; Yu et al. 2024] have been treated through
a differentiable WoS where source terms, boundary conditions, and
the boundary positions have been optimized. The WoS was used
to derive a vorticity-based Monte Carlo fluid solver [Rioux-Lavoie
et al. 2022] and theWalk-on-Boundaries was used to form a velocity-
based Monte Carlo fluid solver [Sugimoto et al. 2024a]. Recent work
by Sugimoto et al. [2024b] adapted WoS to a volumetric neighbor-
hood, developing a method for surface PDE’s with Dirichlet bound-
aries. To handle exterior problems more effectively, Nabizadeh et al.
[2021] proposed an inversion map to transform them into a bounded
interior domain. Although they solve a different problem, their map-
ping in 2D is also conformal and thus related to our approach.

2.3 Brownian Motion
Instead of only using circles as primitives in our walk, we solve 2D
BIEs with Monte Carlo sampling on geometric primitives such as
semicircles and circle sectors. In order to confirm the correctness
of the derived probability distributions, we compare them later
with Monte Carlo simulations of Brownian motion, which approach
the steady state of the heat equation, and thereby solve Laplace
problems. For a coordinate 𝑏 (𝑡) : R → R, we speak of Brownian
motion if 𝑏 (𝑡 + ℎ) − 𝑏 (𝑡) ∼ N (0, ℎ) holds independently ∀𝑡 ∈ R
where N(0, ℎ) is a mean-free normal distribution with variance ℎ.
The Brownian path unfolds as [Glasserman 2004, p. 81]:

𝑏 (𝑡𝑖+1) = 𝑏 (𝑡𝑖 ) +
√
𝑡𝑖+1 − 𝑡𝑖 · 𝑍𝑖 (8)

where 𝑍𝑖 are independent random samples from a uniform normal
distribution. For a seed point x(0) = c within a certain domain, the
first passage problem asks where a particle exits the domain when
it performs a Brownian motion. If a particle is seeded at the center
c of a ball B with radius 𝑅, then the first exit probability 𝑝 (c, x) at

boundary point x ∈ 𝜕B is the same for all directions:

𝑝 (c, x) = 1
2𝜋𝑟

, 𝑟 = ∥c − x∥ (9)

Since the exit position x ∈ 𝜕B is on the boundary of the ball, we
have 𝑟 = 𝑅. Note that the exit probability of the Brownian motion
on a ball in Eq. (9) is identical to the Poisson kernel P𝐵 (c, x) of a
ball in Eq. (6). This equivalence holds similarly for other geometric
primitives [Given et al. 1997], for whichwe later compare the derived
exit probabilities with first passage walks using Eq. (8).

2.4 Method of Images
In electrostatics, the method of images is a well-known approach
to derive Green’s functions by introducing exterior artificial point
charges [Jackson 1998]. Unfortunately, the method of images is ap-
plicable to a limited set of geometric configurations only. Motivated
by its application to molecular dynamics, Given et al. [1997] used
the method of images to derive Green’s functions for spheres that
contain or intersect one boundary sphere, or one boundary edge
passes through it, which is referred to as a first passage sphere. They
proposed a greedy algorithm, which chooses the largest possible first
passage sphere, for which the Green’s function is known. Concep-
tually, there are similarities to our approach. Likewise, we generate
first passage circles that intersect with the boundary geometry. In
order to support convex and concave corners, we compute Green’s
functions for circle segments, as well, which share two edges with
the boundary geometry. Further, instead of generating the circles
on-the-fly during the walk around the current sample point, we
precompute all circles and let the random walk select the next prim-
itive from the precomputed set. This means that our sample point
is not at the center of the first passage circles. When selecting the
next primitive, the primitive boundary that is not shared with the
domain should be far away from the start point of the walk, since
the likelihood of first passage decreases with distance, resulting in
the desired higher probability of exiting on the domain boundary.
Johnston et al. [2005] derived Green’s functions for equilateral trian-
gles. Placing equilateral triangles that share edges with the domain,
while the remaining non-shared edges are far away from the start
of the walk, is an optimization problem in itself. The placement of
our primitives is simpler since the radius is found with closest-point
queries. Sawhney and Crane [2020] already mentioned in their sem-
inal work that first passage approaches are an option to avoid the
epsilon shell of the Walk-on-Spheres. As far as we know, this has
not been attempted in the graphics community.

2.5 Conformal Maps
Conformal maps 𝐹 (𝑥) : X → Y between the spaces X and Y
are well-known in geometry processing for their property of being
angle-preserving [Choi et al. 2020; Sawhney and Crane 2017; Weber
and Gotsman 2010]. By representation in the complex number plane
X ⊂ C,Y ⊂ C, such maps are biholomorphic, i.e., they are bijective
and complex differentiable [Kythe 2019]. By the Riemann mapping
theorem a conformal map exists between non-empty simply con-
nected open subsets such as circles, semicircles, or circle sectors. An
important observation is that Laplace equations are invariant under
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conformal maps [Kythe 2019, Theorem 17.6]. Thus, we later use
conformal maps to solve Laplace equations on different primitives.

3 Conformal First Passage

3.1 Overview
In the Walk-on-Spheres [Sawhney and Crane 2020], the number of
steps in the random walk depends on the thickness of the epsilon
shell. The smaller the epsilon shell, the less bias is introduced but
the longer the walks become. Fig. 2a illustrates random walks near
straight edges and at corners. The epsilon is necessary since circles
touch the boundary only in one point, making it highly unlikely
to sample. Instead of using largest-possible empty circles, we take
inspiration from the first passage algorithm of Given et al. [1997],
and use circles that intersect with Dirichlet boundary geometry. For
the intersection with one edge, we use semicircles, and to support
corners, we use circle segments (cakes), which are shown in Fig. 2b.
While our semicircle primitive is conceptually similar to one of the
Green’s functions proposed by Given et al. [1997], the formulation
and derivation differ significantly, since we use conformal maps
instead of the method of images, cf. Section 2.4. To the best of our
knowledge, circle segments have not been used before. We calculate
exit probabilities for walks that start not at the center of circles,
but that start at arbitrary positions. We derive these probabilities
from conformal maps in the following sections for semicircles and
cakes, which is based on Green’s functions. Fig. 3 visualizes Green’s
functions on the three primitives for a given start point using isocon-
tours. Along the boundary of the primitives, the normal derivative
of the Green’s function, corresponding to the density of the isocon-
tours, is equal to the exit probability according to which we want
to generate sample points efficiently. We achieve this by generating
sample points on the circle, and conformally mapping them to the
semicircle or cake, respectively. After introducing the conformal
maps, for which an overview is given in Fig. 4, we elaborate on the
placement algorithm that fills the scene with overlapping primitives.
Lastly, we describe our recursive conformal first passage algorithm.

3.2 Semicircle Primitive
Our semicircle has a certain radius, position, and orientation such
that its straight edge aligns with a part of the domain boundary
𝜕Ω. We translate, rotate, and scale the semicircle to become a unit
semicircle, namely the right half of a unit circle. When expressing
the domain of the unit semicircle Z ⊂ C in the complex domain,
where the real part is the 𝑥 coordinate and the imaginary part is the
𝑦 coordinate, then all points inside the semicircle have positive real
parts. That is, ∀𝑧 ∈ Z it holds that |𝑧 | ≤ 1 and −𝜋

2 < arg(𝑧) < 𝜋
2 .

As intermediate domains we also need the upper half plane Y ⊂ C
and the unit circle X ⊂ C. Next, we describe the conformal maps
and their inverses, which map between those domains.

Unit Semicircle To Upper Half Plane. The mapping from a unit
semicircle to the upper half plane is given by 𝐹0 (𝑧) : Z → Y, which
is a rotated version of Map 3.40 in Kythe [2019]:

𝐹0 (𝑧) =
(
𝑧 − 𝑖

𝑧 + 𝑖

)2
, 𝐹−10 (𝑦) =

2√−𝑦 + (1 + 𝑦)𝑖
1 − 𝑦

(10)

(a) Walk-on-Spheres (b) Conformal first passage

Fig. 2. Side-by-side comparison of Walk-on-Spheres [Sawhney and Crane
2020] and our conformal first passage. Three cases are shown from left to
right: a straight boundary curve, a convex corner, and a concave corner.

unit circle unit semicircle unit cake

Fig. 3. Visualization of Green’s functions using isocontours. The normal
derivative of the Green’s function (i.e., the density of isocontours) is equal
to the exit probability of a random walker starting at the orange dot.

Upper Half Plane To Unit Circle. 𝐹1 (𝑦) : Y → X maps from the
upper half plane to the unit circle, c.f. Map 3.23 in Kythe [2019]:

𝐹1 (𝑦) =
𝑦 − 𝑖

𝑦 + 𝑖 , 𝐹−11 (𝑥) = (1 + 𝑥)𝑖
1 − 𝑥

(11)

Unit Semicircle To Unit Circle. With this, the mapping from the
unit semicircle to the unit circle can be expressed by concatenating
the upper two mappings, which we denote by 𝐹2 (𝑧) : Z → X:

𝐹2 (𝑧) = 𝐹1 (𝐹0 (𝑧)), 𝐹−12 (𝑥) = 𝐹−10 (𝐹−11 (𝑥)) (12)

Offset Unit Circle To Unit Circle. The closed-form expression of
the Poisson kernel of the circle in Eq. (6) is only valid if the start
point of the first passage walk is at the circle center. In practice, our
Monte Carlo walks may arrive at any point in a semicircle. Thus,
mapping the point to the unit circle usually results in a place 𝑐 that
is not at the circle center. To map point 𝑐 conformally such that it
is at the center of the unit circle, we use 𝐹3 (𝑐, 𝑥) : X × X → X, cf.
Map 3.33 in Kythe [2019], with 𝑐 being the complex conjugate of 𝑐:

𝐹3 (𝑐, 𝑥) =
𝑥 − 𝑐

1 − 𝑥𝑐
, 𝐹−13 (𝑐, 𝑥) = 𝑥 + 𝑐

1 + 𝑥𝑐
(13)

Offset Unit Semicircle To Unit Circle. Combining all together, the
conformal map 𝐺 (𝑐, 𝑧) : Z ×Z → X takes the unit semicircle to
the unit circle and makes sure that point 𝑐 in the unit semicircle is
mapped to the center of the unit circle:

𝐺 (𝑐, 𝑧) = 𝐹3 (𝐹2 (𝑐), 𝐹2 (𝑧)), 𝐺−1 (𝑐, 𝑥) = 𝐹−12 (𝐹−13 (𝐹2 (𝑐), 𝑥)) (14)

The inverse 𝐺−1 (𝑐, 𝑥) : Z ×X → Z takes a coordinate 𝑥 that was
sampled on the unit circle into the unit semicircle, whereas 𝑐 is the
previous sample point in the unit semicircle.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Conformal First Passage for Epsilon-free Walk-on-Spheres • 5

𝐹4 𝐹0 𝐹1 𝐹3

𝐻

𝐹2

𝐺

Fig. 4. Overview of the conformal maps used in this paper. From left to right: cakes, semicircles, half planes, circles, and circles for which a given point is
mapped to the circle center. The Green’s function GB is known for the circle. Using the inverse maps𝐺−1 and 𝐻 −1 it can be transformed to the semicircle
and cake, respectively. In this figure, selected points are colored, giving an impression how they are transformed between the domains.

Sample Generation. To perform the random walk x0, . . . , x𝑛 in the
domain Ω, we need to generate random samples on the semicircle
boundaries. This is done by uniformly generating samples on the
boundary of the unit circle 𝜕X and transforming them with the
conformal map𝐺−1 (𝑐, 𝑥) to the boundary of the unit semicircle 𝜕Z:

𝑧𝑘+1 = 𝐺−1 (𝑧𝑘 , cos(2𝜋𝜂) + 𝑖 sin(2𝜋𝜂)) (15)

where 𝜂 is a random number in [0,1]. The complex points 𝑧𝑘 , which
are still in the unit semicircle, are rotated, scaled, and translated
back into the image domain x𝑘 ∈ Ω. Since the resulting point
distribution follows the Poisson kernel already, it can be readily
used for sampling. Next, we derive the Poisson kernel, since it can
be used as ground truth probability distribution for our experimental
validations [Given et al. 1997].

Poisson Kernel. For a given point 𝑐 inside the unit semicircleZ,
we compute the Poisson kernel PZ (𝑐, 𝑧) at a boundary point 𝑧 by
conformally mapping the Green’s function GB of a ball from the
unit circle X to the unit semicircleZ and take its normal derivative
in the semicircle, which is done via chain rule:

PZ (𝑐, 𝑧) = dG𝐵 (0,𝐺 (𝑐, 𝑧))
d𝑧

· 𝑛𝑧 (16)

=
𝜕G𝐵 (0, 𝑥)

𝜕𝑥 |𝑥=𝐺 (𝑐,𝑧 )
· 𝜕𝐺 (𝑐, 𝑧)

𝜕𝑧
· 𝑛𝑧 (17)

where 𝜕G𝐵 (0,𝑥 )
𝜕𝑥 = − 𝑥

2𝜋 𝑥𝑥
, and 𝜕𝐺 (c,𝑧 )

𝜕𝑧 is the coordinate Jacobian
from the unit semicircle Z to the unit circle X. Given a path vertex
𝑧𝑘 ∈ Z, the Poisson kernel PZ (𝑧𝑘 , 𝑧𝑘+1) gives us the probability
for placing the next point 𝑧𝑘+1 on the semicircle boundary 𝜕Z.

Boundary Integral. Phrased on the unit semicircle, the boundary
integral equation in Eq. (5) can be split into a part on the straight
edgeZ1 and a part on the circle arcZ2:

u(𝑐) =
∫
𝜕Z1

PZ (𝑐, 𝑧) g(𝑧) d𝑧︸                        ︷︷                        ︸
direct edge integral

+
∫
𝜕Z2

PX (𝑐, 𝑧) u(𝑧) d𝑧︸                        ︷︷                        ︸
recursive arc integral

. (18)

Similar as in the first passage formulation of Given et al. [1997],
the direct part in Eq. (18) is a 1-dimensional integral that could be
calculated numerically without the need for a recursion, where g(𝑧)

is the Dirichlet boundary condition. The recursive part in Eq. (18)
would be computed recursively as usual. For piecewise constant
colors on the boundaries, the direct edge integral would simplify to
calculating the probability of hitting the edge times the color.

Edge Probability. The probability of directly hitting the straight
edge is found by transforming the corners of the edge (𝑖 and −𝑖) to
the unit circle and computing its signed enclosed angle, normalized
to a probability by dividing by 2𝜋 [Snipes and Ward 2016]:

𝑝Z1 (𝑐) =
∡(𝐺 (𝑐, 𝑖), 0,𝐺 (𝑐,−𝑖))

2𝜋
(19)

3.3 Cake Primitive
To better cover corners, our second primitive is the sector of a
unit circle, which we refer to as unit cake for simplicity. The unit
cake is likewise defined in the complex plane as W ⊂ C and it is
parametrized by a half angle 𝛼 . A point𝑤 ∈ W is part of the cake
if |𝑤 | ≤ 1 and −𝛼 ≤ arg(𝑤) ≤ 𝛼 . The conformal map to the unit
cake is based on the previously introduced conformal maps to the
unit semicircle, cf. Section 3.2.

Unit Cake To Unit Semicircle. The mapping from a unit cake to
the right unit semicircle is given by 𝐹4 (𝛼,𝑤) : [0, 𝜋] × W → Z,
which is similar to Map 3.42 in Kythe [2019]:

𝐹4 (𝛼,𝑤) = 𝑤
𝜋
2𝛼 , 𝐹−14 (𝛼, 𝑧) = 𝑧

2𝛼
𝜋 (20)

Offset Unit Cake To Unit Circle. Combining the maps defined in
the previous section with Eq. (20), we obtain a conformal map from
the unit cake to the unit circle with the constraint that a given point
𝑐 in the unit cake is mapped to the center of the unit circle. The map
is given by 𝐻 (𝛼, 𝑐,𝑤) : [0, 𝜋] ×W ×W → X:

𝐻 (𝛼, 𝑐,𝑤) = 𝐺 (𝐹4 (𝛼, 𝑐), 𝐹4 (𝛼,𝑤)), (21)

𝐻−1 (𝛼, 𝑐, 𝑥) = 𝐹−14 (𝛼,𝐺−1 (𝐹4 (𝛼, 𝑐), 𝑥)) (22)

Again, to map a sample point 𝑥 from the unit circle to the unit cake,
the inverse map 𝐻−1 (𝛼, 𝑐, 𝑥) : R ×W ×X → W is used.

Sample Generation. To generate random samples on the unit cake
that follow the distribution of the Poisson kernel, we again rely
on the following sampling strategy: First, we uniformly sample
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points on the unit circle X. Second, we transform the points with
the conformal map 𝐻−1 (𝛼, 𝑐, 𝑥) to the unit cakeW:

𝑤𝑘+1 = 𝐻−1 (𝛼,𝑤𝑘 , cos(2𝜋𝜂) + 𝑖 sin(2𝜋𝜂)) (23)

where 𝜂 is a random variable, uniformly distributed in [0, 1]. When
generating the point 𝑤𝑘+1, the previous point 𝑤𝑘 is conformally
mapped to be at the center of the unit circle, which is the configura-
tion in which the Green function is known, cf. Eq. (6).

Poisson Kernel. To compute the Poisson kernel PW (𝛼, 𝑐,𝑤) at a
boundary point𝑤 ∈ 𝜕W for a given seed point 𝑐 ∈ W inside the
unit cake, we map the Green’s function conformally from the unit
circle and take its normal derivative in the unit cake:

PW (𝛼, 𝑐,𝑤) = dG𝐵 (0, 𝐻 (𝛼, 𝑐,𝑤))
d𝑤

· 𝑛𝑤 (24)

=
𝜕G𝐵 (0, 𝑥)

𝜕𝑥 |𝑥=𝐻 (𝛼,𝑐,𝑤 )
· 𝜕𝐻 (𝛼, 𝑐,𝑤)

𝜕𝑤
· 𝑛𝑤 (25)

with 𝜕𝐻 (𝛼,𝑐,𝑤 )
𝜕𝑤 being the Jacobian from unit cake to unit circle.

Analogous to Eq. (18), the boundary integral of the BIE can be split
into a part for the two edgesW1,W2 and a circular arc W3.

Edge Probability. Similar to the semicircle primitive, the prob-
ability of having a first passage through an edge is computed by
mapping the end points of the edges from the unit cakeW to the
unit circle X and measuring the signed enclosed angle, divided by
the circumference of the unit circle. For edge W1, the points 𝑒𝛼𝑖
and 0 are transformed, and for edgeW2 the points 0 and 𝑒−𝛼𝑖 are
transformed to the unit circle, giving the probabilities:

𝑝W1 (𝑐) =
∡(𝐻 (𝛼, 𝑐, 𝑒𝛼𝑖 ), 0, 𝐻 (𝛼, 𝑐, 0))

2𝜋
(26)

𝑝W2 (𝑐) =
∡(𝐻 (𝛼, 𝑐, 0), 0, 𝐻 (𝛼, 𝑐, 𝑒−𝛼𝑖 ))

2𝜋
(27)

3.4 Geometry Placement
While the WoS needs distance queries to determine the next largest-
possible sphere for a given path vertex, we instead precompute
an arrangement of semicircles, cakes, and circles that covers the
domain. Our placement of primitives in a domain with piecewise
linear boundaries consists of three steps. First, we generate a largest-
possible cake (circle sector) for every corner (both convex and con-
cave), as shown in Fig. 5a. The cake may not intersect with geometry
other than the two edges belonging to its corner. Second, for all
boundary edges we place one or multiple semicircles, following a
greedy strategy, see Fig. 5b. Starting from both end points of the
edge, a semicircle is tentatively generated with a radius half the edge
length. If the tentative semicircle intersects with geometry, then its
radius is reduced until it no longer intersects with geometry. If the
semicircle happens to contain another primitive entirely, then the
other primitive can safely be removed as it is redundant. The next
semicircle is centered at the end point of the previous semicircle. In
order to further increase coverage, the creation of additional semi-
circles is enforced at locations where two of the already instantiated
semicircles meet. Third, we determine for every pixel the overlap-
ping primitive that has the highest probability to lead from the pixel
center onto a straight edge. For this, the probabilities in Eqs. (19),

(a) Cakes at corners (b) Semicircles at edges (c) Circles in free space

Fig. 5. Exemplary placements of cakes, semicircles, and circles.

(26), and (27) can be used. As simple approximation, we choose the
primitive whose radius is farthest away from the pixel center. The
ideal primitive is stored for each pixel to enable fast access during
the random walk. In case no good primitive was found, we select
the largest-possible circle containing the point, see Fig. 5c. Note
that we generate primitives only once in a pre-process, while WoS
generates a comparable number of circles in every iteration.

3.5 Recursive Algorithm
For each pixel in the image, we first generate a random subsample,
which is transformed from image space to the domain of the scene
Ω, giving the coordinate x0. For the given pixel, we look up the
ideal primitive to sample. For this explanation, we assume that a
semicircle is chosen. The process is analogous for cakes and circles.
Next, the sample point x0 is transformed from the scene domain Ω
into the unit semicircle domain, giving 𝑧0 ∈ Z. By applying Eq. (15),
we obtain a sample 𝑧1 ∈ 𝜕Z on the boundary of the semicircle. The
coordinate is transformed back into the scene domain, resulting in
x1 ∈ Ω. If the point x1 is on the domain boundary 𝜕Ω, then the
Dirichlet boundary condition g(x1) is evaluated and added to the
Monte Carlo sum of the pixel, cf. Eq. (7). Otherwise, the process
repeats recursively, generating samples x2, x3, etc. We provide a
C++ reference implementation in the supplemental material.

4 Results
In the following sections, we confirm the correctness of our ob-
tained first passage probabilities, we evaluate parameter choices,
discuss the scaling behavior of the performance, and we compare
the approach with the Walk-on-Spheres regarding path length and
runtime. The test scenes were kindly provided by Orzan et al. [2008].

4.1 Brownian Motion Comparison
To confirm the correctness of our approach, we compute first pas-
sage samples using Brownian motion, the Walk-on-Spheres, and
using our conformal maps, as shown in Fig. 6. For each method, we
calculate a histogram of the exit points, normalize the histogram,
and compare this with the analytically calculated probability distri-
butions. The first set of experiments in (a)-(c) is conducted on the
semicircle. We begin with the Brownian motion, which has the user
parameter ℎ = 𝑡𝑖+1− 𝑡𝑖 . We can see that as ℎ approaches 0, the Brow-
nian motion distribution converges to the ground truth. Similarly,
the Walk-on-Spheres has a parameter, namely the thickness of the 𝜖-
shell. The 𝜖 parameter influences the shape of the distribution when
chosen too large. Both Brownian motion and the Walk-on-Spheres

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Conformal First Passage for Epsilon-free Walk-on-Spheres • 7

0 2 5.140
0.2
0.4
0.6
0.8
1

1.2

boundary parameterization 𝑠

ex
it
pr
ob
ab
ili
ty

𝑝

ℎ = 10−5

ℎ = 10−3

ℎ = 10−2

analytic PZ

(a) Semicircle: Brownian motion
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(b) Semicircle: Walk-on-Spheres
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(c) Semicircle: Conformal First Passage
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(d) Cake: Brownian motion
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(e) Cake: Walk-on-Spheres
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(f) Cake: Conformal First Passage

Fig. 6. Visualization of the probability distribution estimated along the boundary. Top: semicircle with 𝑐 = 0.4 + 0.6𝑖 , the boundary is parameterized from
[0, 2] for the vertical part of the semicircle and from [2, 2 + 𝜋 ] for the arc. Bottom: cake with 𝛼 = 3/4𝜋 , 𝑐 = 0.7 + 0.2𝑖 , with the boundary parameterization
following the edges at [0, 1] and [1, 2], and the arc from [2, 2 + 3/2𝜋 ]. For both, the parameterization 𝑠 starts at the top left corner and goes counterclockwise.

are biased. In contrast, our conformal first passage is free from bias
and matches the analytic ground truth closely. Similar observations
can be made for the cake in (d)-(f), where the parameter position
𝑠 = 1 corresponds to the tip of the convex corner.

4.2 Circle Selection Strategy
Our greedy primitive placement strategy aims for the best possible
coverage of the domain. An ablation study with and without the
different primitives, and the resulting path lengths, is shown in
Fig. 7, where the average path length decreased from 4.8 without
cakes, to 3.8 without additional semicircles, down to 3.6 when using
all primitives. While using semicircles reduces only the average
path length, the cake primitives help especially in corners and at
segment endings. Adding additional semicircles at places where
two semicircles meet gives a modest performance improvement.
In Fig. 8, we visualize the geometry placement for all scenes. The
circles were omitted from these figures to reduce visual clutter.

4.3 Performance Measurements
In Fig. 8, we compare the runtime performance of the proposed
method with the conventional WoS algorithm. Both methods have
been implemented in CUDA on the GPU and utilize a bounding vol-
ume hierarchy (BVH) with surface-area-heuristic for faster closest-
point queries. The BVH is constructed on the CPU using the open
source implementation of Tian and Günther [2025]. On the GPU, a
stack data structure is used for efficient traversal. The performance
measurements were taken on a workstation equipped with an AMD
Ryzen 9 7950X CPU and an NVIDIA RTX 4090 GPU. Even though
the computation of one step with our method is more involved

w/o cakes w/o add. semicircles all primitives
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# semicircles: 2,881
# cakes: 0, # circles: 611,712
∅ path length: 4.8

# semicircles: 1,620
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∅ path length: 3.8

# semicircles: 2,054
# cakes: 1,286, # circles: 477,995

∅ path length: 3.6

1 14

Fig. 7. Geometry placements without cakes, without additional semicircles,
and with all primitives. Adding primitives lowers the average path length.

than in the conventional Walk-on-Spheres algorithm, we are able to
outperform the WoS by requiring less steps to reach the boundary.
Thus, our approach converges further in the same amount of time.
To better show the tradeoff between quality and performance inher-
ent to the Walk-on-Spheres epsilon-shell, we conduct a comparison
with varying epsilon-shell thicknesses in Fig. 9. The epsilon value
is always relative to the domain size. The BVH-accelerated WoS
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Fig. 8. Results of our method for different test scenes rendered at a resolution of 1024 × 1024 pixels. From left to right we see the Poivron (450 initial line
segments), the Lady Bug (704 initial line segments), the Drape (453 initial line segments), and the Zephyr (1299 initial line segments). The first row shows the
converged result of our conformal first passage. The second row depicts the semicircles (red) and cakes (blue) that have been placed in the scene. Note that the
full circles cover the remaining space with plenty of overlap to offer many choices to our primitive selection. Below the images, the number of primitives in use
is listed. The third row of images compares the average path length of our method with the one from a BVH-accelerated Walk-on-Spheres (𝜖 = 0.0027). It can
be seen that the path length decreased (brighter colors). Using convergence plots in log-log domain, the fourth row shows that we converge faster than WoS
at equal time. The RMSE is measured with respect to the reference in the first row computed with 16,384 Conformal First Passage walks per pixel. Note that
the preprocessing time is excluded from this graph. The last row of plots shows the scalability of our method for a growing number of input segments.
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Fig. 9. In this equal time comparison, we vary the size of 𝜖 . While the comparisons in Fig. 8 were conducted with an epsilon-shell of 𝜖 = 0.0027, we show here
the impact of 𝜖 on the runtime per iteration, the RMSE, and the visual quality for a fixed sample count of 1,024. 𝜖 is varied between 3𝑒−4 and 9𝑒−2. In all scenes,
the latter has approximately equal runtime compared to our approach, which shows the tradeoff between quality and performance. The RMSE is measured
with respect to a reference computed with 16,384 Conformal First Passage walks per pixel. A large epsilon shell leads to significant visual discrepancies.

Dataset Primitives Time
Poivron 1,812 30
LadyBug 2,933 39
Drape 3,521 68
Curtain 4,905 83
Zephyr 5,840 170 2,000 4,000 6,000
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Fig. 10. The precomputation time (in ms) is determined by the number of
considered semicircles and cakes, which are here referred to as primitives.

must increase the epsilon by an average of 32 times to close the
performance gap with our approach. However, this results in large
visual discrepancies at boundaries. In Fig. 10, we investigate what
determines the runtime of the most expensive step, i.e., the search
for ideal primitives per pixel. We see a direct relationship between
the preprocessing time and the number of semicircles and cakes
generated in the steps before.

4.4 Lower Number of Path Vertices
Since we walk on primitives that share edges with Dirichlet bound-
aries, we can take larger steps directly onto the boundaries. As a
result, our method requires across all test scenes a lower maximum
number of steps compared to the conventional Walk-on-Spheres,
although the advantage is sometimes marginal. More importantly,

however, we demonstrate in Fig. 8 that our approach considerably
reduces the average path length of the random walks. The visualiza-
tions of the path length demonstrate that our primitives facilitate
direct jumps to boundaries, which is especially evident on longer
boundary segments and at segment endpoints, e.g., in the Drape
scene. However, also on scenes with shorter boundary segments,
the evaluation demonstrates that the approach reduces the path
length over the entire image.

4.5 Lower Error Near Boundaries
Contrary to the conventional Walk-on-Spheres, our conformal first
passage formulation uses primitives that share edges with the Dirich-
let boundary, allowing for a direct sampling without the need for
an epsilon shell. In Fig. 11, we compare the two methods. The con-
formal first passage exhibits less bias, and interestingly also less
numerical errors which would cause unintended color leaking.

4.6 Discretization of Boundaries
We applied our method to diffusion curves, for which the boundary
geometry is given by cubic Bézier splines [Orzan et al. 2008]. Since
the computation of distances to Bezier curves is expensive, it is not
uncommon in the Monte Carlo PDE literature to approximate the
boundary with piecewise linear segments. We discretized the curves
adaptively using the Ramer-Douglas-Peuckert algorithm [Douglas
and Peucker 1973; Ramer 1972], choosing the split points directly
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𝜖 : 2𝑒−2

Fig. 11. Left: Using Walk-on-Spheres, artifacts are visible close to segments
and in surrounding areas, due to the epsilon-shell (here 𝜖 = 2𝑒−2). Right: Our
approach does not require the epsilon-shell and provides better accuracy,
especially close to segments.

462 segments 1299 segments

result primitives result primitives

Fig. 12. The initial input curves are cubic Bézier splines. Discretizing them
into a higher number of line segments, lowers the possible radius of semicir-
cles and cakes. This results in larger empty areas, which are filled up with
circle primitives, which are not visualized here.

from the continuous curve [Sederberg and Nishita 1990]. In the
last row of Fig. 8, we evaluate how the curve discretization influ-
ences the runtime of our approach. When lowering the permitted
approximation error, the number of segments increases, leading to
smaller–and thereby more–semicircles and cakes. We observe that
the runtime scales linearly in the scene complexity. Visual results
of the generated primitives can be seen in Fig. 12.

4.7 Discussion
Poisson Equation. Unlike the Laplace equation, the Poisson equa-

tion is not invariant under conformal maps. Nevertheless, it is pos-
sible to extend our approach to planar Poisson equations in two
dimensions and solve Δu(x) = f (x) with Eq. (2). To compute the
interior integral in the BIE [Sawhney et al. 2023] at 𝑐 , we sample
a point 𝑦 ∈ X in the unit disc, map it to the primitive x(𝑐,𝑦), and
evaluate the source term f (x(𝑐,𝑦)), cf. [Olver 2017, page 53]:

uint (𝑐) =
∫
X
GX (𝑐,𝑦) f (x(𝑐,𝑦))

���� 𝜕x(𝑐,𝑦)𝜕𝑦

���� d𝑦 (28)

where
��� 𝜕x(𝑐,𝑦)𝜕𝑦

��� is the Jacobian determinant needed to model the
change of variables. A result of our approach is shown in Fig. 13.

Piecewise Linear Boundaries. We assumed that the boundary is
piecewise linear, since we only used conformal maps for straight
boundaries. For circular or elliptic boundaries, conformal maps are
likewise available [Kythe 2019], and could be added in the future.

Precomputation. While our approach iterates faster than theWalk-
on-Spheres, our method requires a preprocessing to determine the
primitives for the walk. For scenarios in which the colors of the

source term f (x)

𝑓𝑅 (x) 𝑓𝐺 (x) 𝑓𝐵 (x)

Fig. 13. As demonstrated here, our approach can be extended to the Poisson
equation Δu(x) = f (x) in two dimensions.

diffusion curves are changed interactively, the primitives can be
reused, since the geometry of the boundary curves has not changed.

Neumann Boundary Conditions. Similar to reflections along Neu-
mann boundaries, it would be imaginable to reflect paths back into
the domain. A smarter combination with the Walk-on-Stars is an-
other interesting avenue for future work.

Extension to 3D. Our approach is fundamentally based on confor-
mal maps. In 3D, the construction of conformal maps is significantly
more constrained than in two dimensions, as demonstrated by Li-
ouville’s theorem. A generalization to 3D is therefore challenging.

Invariance to Primitive Placement. In contrast to discretization
choices in boundary element methods (BEMs) and in mesh-based
solvers, our primitive placement does not affect the quality of the
result, i.e., our approach remains unbiased.

5 Conclusions
We presented a novel Monte Carlo approach to solve Laplace equa-
tions with Dirichlet boundary conditions in two dimensions. While
Walk-on-Spheres [Muller 1956; Sawhney and Crane 2020] uses
largest empty circles, which touch the boundary in only one point,
we utilized semicircles and circle sectors (cakes) that can nestle
against one or two boundary edges. Walks are thereby more likely
to terminate after fewer steps. Unlike a previous first passage ap-
proach [Given et al. 1997], we used conformalmaps to derive Green’s
functions and Poisson kernels, allowing us to utilize circle sectors
that are well-suited for corners. Further, we precomputed the set of
geometric primitives on which the walk is performed. We confirmed
the correctness of our Monte Carlo walks by comparing with ana-
lytic first passage probability distributions, Brownian motion simu-
lations, and with the Walk-on-Spheres. We demonstrated a reduced
number of walking steps compared to previous work, resulting in
faster computation times once the primitives are placed. We be-
lieve that our results show the potential of first passage algorithms
in conjunction with conformal maps, which offers new avenues
for future research. For example, we plan to continue the work
on Poisson equations, and extend the method to handle Neumann
boundary conditions, which likely results in a combination with
existing methods for such problems [Miller et al. 2024b; Sawhney
et al. 2023; Sugimoto et al. 2023]. Further, other primitives [Johnston
et al. 2005] could be used to improve the domain coverage.
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