
Variational Feature Extraction in Scientific Visualization – Additional
Experiments
NICO DASSLER and TOBIAS GÜNTHER, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

ACM Reference Format:
Nico Daßler and Tobias Günther. 2024. Variational Feature Extraction in
Scientific Visualization – Additional Experiments. ACM Trans. Graph. 43, 4,
Article 109 (July 2024), 3 pages. https://doi.org/10.1145/3658219

This document contains further experiments. In the following, we
provide further feature definitions for the modeling of Jacobi sets in
Section 1, and for wind wake centerlines in Section 2. Afterwards,
we elaborate on the convergence behavior in Section 3, where we
examine the reduction of the functional derivatives, the distance to
ground truths, and the dependence on the seed point.

1 JACOBI SETS

1.1 Definition
In Morse theory, a branch of differential topology, the relationships
of two Morse functions can be studied using Jacobi sets [Edelsbrun-
ner and Harer 2002; Klötzl et al. 2022]. A Jacobi set is defined for
two𝑚-dimensional scalar fields 𝑠1 (y), 𝑠2 (y) : R𝑚 → R as the union
of all locations at which the two gradient fields align:

{y : ∇𝑠1 (y) ∥ ∇𝑠2 (y)}. (1)

For two 3-dimensional scalar fields 𝑠1 (y), 𝑠2 (y) : Y→ R, we define
a 1-dimensional Jacobi set

(
𝑓1 (𝑥), . . . , 𝑓3 (𝑥)

)T variationally as mini-
mizer using the following feature term and its functional derivative:

M 𝑗 =
1
2 ∥∇𝑠1 (f (𝑥)) × ∇𝑠2 (f (𝑥))∥2 , (2)
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)T
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T

. (3)

In Eq. (3), we dropped the dependencies for brevity, i.e., ∇𝑠1 :=
∇𝑠1 (f (𝑥)) and ∇𝑠2 := ∇𝑠2 (f (𝑥)). To treat 2D scalar fields, the third
component of the gradients ∇𝑠1 and ∇𝑠2 is set to zero.

1.2 Experiment
For demonstrative purposes, we treat the two velocity components
(𝑢, 𝑣) of a two-dimensional flow around a cylinder [Günther et al.
2017] as scalar functions. Thus, given the two 2-dimensional scalar
fields𝑢 (y), 𝑣 (y) : Y→ R, we extract a smooth 1-dimensional Jacobi
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Fig. 1. Results of the Jacobi set extraction from the scalar components of a
2-dimensional vector field. The Jacobi set (blue line) shows all locations, at
which the gradient of the 𝑢 component (shown as LIC on the left) and the
gradient of the 𝑣 component (shown as LIC on the right) are aligned. The
color in the background shows the sign of the scalar quantity in which the
Jacobi set arises as isocontour with isovalue zero.

set f (𝑥) =
(
𝑓1 (𝑥), 𝑓2 (𝑥)

)T by inserting the velocity field components
into Eq. (2), which gives:

Ljacobi =
1
2





 𝜕𝑢 (f)𝜕𝑦1

𝜕𝑣 (f)
𝜕𝑦2

− 𝜕𝑢 (f)
𝜕𝑦2

𝜕𝑣 (f)
𝜕𝑦1





2︸                                     ︷︷                                     ︸
Jacobi set

+ 𝜆𝑠

2 ∥∇f (𝑥)∥2︸         ︷︷         ︸
smoothness

. (4)

The Jacobi set term is what the 3D expression in Eq. (2) simplifies to
for a 2D field, which is the last component of the 3D cross product.
Fig. 1 displays the result. The left image shows the gradient of 𝑢
with a line integral convolution [Cabral and Leedom 1993], while
the right image shows the gradient of 𝑣 . The color in the background
depicts the third component of the cross product, i.e., the signed term
in the Jacobi set norm of Eq. (4). The blue lines are the result of our
variational feature extraction for 𝜆𝑠 = 105, using gradient descent
(step size ℎ = 10−2) for growing and subsequent refinement. The
blue lines separate regions of equal sign in the third cross product
component well, which is the desired result. In this example, we
extracted closed feature curves. Thus, the growing automatically
terminates and closes the feature curve when the end points of the
curve are close enough to each other.

2 WIND ENGINEERING

2.1 Definition
Wind engineering is concerned with the efficient operation of clean
energy sources. For wind farms, a key driver for the efficiency of a
turbine is the wind force acting on the blades. In a larger array of
wind turbines, the individual turbines produce wake corridors with
reduced wind magnitude, in which another turbine will experience
a reduced efficiency [Barthelmie and Jensen 2010]. In wind engi-
neering, assumptions about velocity profiles [Vollmer et al. 2016]
or automatic thresholding methods [Krutova et al. 2022] have been
used, which assume that multiple wind wakes do not interfere. To
model domain knowledge about the expected feature direction, we
add a regularizer that orientates the feature curve (𝑛 = 1) along a
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given tangent direction v(𝑥) : X→ R𝑚 :

Γ𝑜 =
1
2 ∥v(𝑥) − ∇f (𝑥)∥2, 𝛿Γ𝑜

𝛿f
= (∇v(𝑥) − ∇2f (𝑥))T . (5)

This formulation is the building block behind Poisson-based vector
field exploration tools [Esturo et al. 2013]. As with flow alignment,
the orientation can be enforcedwith a Neumann boundary condition
∇f (𝑥0) = v(𝑥0) at point 𝑥0 ∈ X along the curve.

2.2 Experiment
Formally, let v(y) be the wind vector field and let 𝑠 (y) be its magni-
tude field, i.e., 𝑠 (y) = ∥v(y)∥. Further, we let v(𝑥) be the constant
downstream direction of the flow. We define the wind wake center-
lines variationally as minimizer of the following Lagrangian:

Lwake =
1
2 ∥∇𝑠 (f (𝑥)) × c1 (f (𝑥))∥2︸                            ︷︷                            ︸

valley line

+ 𝜆𝑜

2 ∥v(𝑥) − ∇f (𝑥)∥2︸                    ︷︷                    ︸
orientation

, (6)

Fig. 2 shows the results of a wind wake corridor extraction in a
Lattice-Boltzmann simulation [Schottenhamml et al. 2022]. Blue
regions indicate a low velocity magnitude.

Multi-Scale Extraction. The wake of the wind turbine is turbulent,
which complicates the extraction of a long valley line. To improve
the convergence to a better optimum, we followed a multi-scale
approach that optimizes on the low frequency band of the field first.
In Figs. 2(a)-(c), we successively extracted the wind wake from a less
and less smoothed field, using the solution of the previous smoother
level as next initial guess. In comparison, the direct variational
extraction without multi-scale approach in Fig. 2(d) is locally stuck
in a suboptimal path. This is another example for the importance
of finding a suitable initial guess to start from. Optimizations were
done using Adam (learning rate ℎ = 10−4) with our refine method
as described above. The first extraction was seeded from a straight
line. For all extractions, we used 𝜆𝑜 = 106 as the orientation weight.

3 CONVERGENCE
Vanishing Functional Derivative. The gradient-based optimization

of the variational problem requires a suitable setting of numerical
parameters, such as the step size, and the number of iterations. For
the parameter selection, it is helpful to visualize the reduction of the
functional derivative over time, which is expected to vanish to zero
as the feature converges. Fig. 3 shows the convergence plots for the
delta wing (aerodynamics) in (a), the Earth mantle (geophysics) in
(b), the ocean eddies (oceanography) in (c), and the extremal surface
in (d). In all cases, convergence can be observed.

Convergence to Ground Truth. For the extremal surface in Fig. 4,
an exact ground truth surface is known by construction. In the plot,
we visualize the average vertex error for an increasing number of
refinement iterations. The residual error decreases, as the surface
converges from its initial guess to the ground truth. Another ground
truth comparison in the following paragraph, as well.

Seed Sensitivity. Since the tensor coreline example is an analytic
data set without regularizer, the ground truth tensor coreline is
known. In Fig. 5, we plot the residual of the refinement process after

multi-scale approach
(a)

(b)

(c)

direct approach
(d)

(a) (b) (c) (d)

−0.7 −0.4

Fig. 2. In the turbulent wake behind a wind turbine, the eastward wake
centerline is extracted as magnitude valley line. (a)-(c) shows a variational
multi-scale extraction, while (d) shows the direct extraction. (a) extracts the
green line from the yellow seed line in a smoothed field. (b) takes the green
line from above and extracts the purple line in a less smoothed field. (c) takes
the purple line as input and extracts the final blue line in the unsmoothed
field. For comparison, (d) tries to extract the valley line immediately in the
unsmoothed field from the yellow seed line, which is not successful.
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Fig. 3. Plots of the gradient norm, i.e., the norm of the functional derivative
∥𝛿F[f (x) ]/𝛿f ∥, during the refinement process. For all data sets, the gradi-
ent norm decreases as expected while the feature curves/surfaces converge.

the first growth step for three different 6D seed points (1, 0, 0, 1, 1, 0)
(green), (0.5, 0, 0, 1, 1, 0) (orange), and (0.3, 0, 0, 1, 1, 0) (purple). The
refinement converges onto the coreline, although this happens at a
slow rate. When beginning at a spatial distance of more than 1.1,
the refinement is unable to converge to the tensor coreline and the
method fails, which underlines that a suitable seed point is required.
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Fig. 4. Residual plot of our ridge surface extraction, showing the conver-
gence towards the ground truth after a sufficient number of iterations.
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Fig. 5. Here, we study the seed point sensitivity at the tensor coreline
example using three different seed points (right image). Due to the symmetry
of the data set, the result is radially symmetric for other seed points at
the same distance from the coreline. Residual plots (left image) show the
convergence rate for an increasing number of refinement iterations. The
optimization used gradient descent. The computation converged for all
three seed points. At a larger distance, the optimization fails.
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